首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:A 21/16-Approximation for the Minimum 3-Path Partition Problem
  • 本地全文:下载
  • 作者:Yong Chen ; Randy Goebel ; Bing Su
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:149
  • 页码:1-20
  • DOI:10.4230/LIPIcs.ISAAC.2019.46
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The minimum k-path partition (Min-k-PP for short) problem targets to partition an input graph into the smallest number of paths, each of which has order at most k. We focus on the special case when k=3. Existing literature mainly concentrates on the exact algorithms for special graphs, such as trees. Because of the challenge of NP-hardness on general graphs, the approximability of the Min-3-PP problem attracts researchers' attention. The first approximation algorithm dates back about 10 years and achieves an approximation ratio of 3/2, which was recently improved to 13/9 and further to 4/3. We investigate the 3/2-approximation algorithm for the Min-3-PP problem and discover several interesting structural properties. Instead of studying the unweighted Min-3-PP problem directly, we design a novel weight schema for l-paths, l in {1, 2, 3}, and investigate the weighted version. A greedy local search algorithm is proposed to generate a heavy path partition. We show the achieved path partition has the least 1-paths, which is also the key ingredient for the algorithms with ratios 13/9 and 4/3. When switching back to the unweighted objective function, we prove the approximation ratio 21/16 via amortized analysis.
  • 关键词:3-path partition; exact set cover; approximation algorithm; local search; amortized analysis
国家哲学社会科学文献中心版权所有