首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:On Adaptivity Gaps of Influence Maximization Under the Independent Cascade Model with Full-Adoption Feedback
  • 本地全文:下载
  • 作者:Wei Chen ; Binghui Peng
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:149
  • 页码:1-19
  • DOI:10.4230/LIPIcs.ISAAC.2019.24
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In this paper, we study the adaptivity gap of the influence maximization problem under the independent cascade model when full-adoption feedback is available. Our main results are to derive upper bounds on several families of well-studied influence graphs, including in-arborescences, out-arborescences and bipartite graphs. Especially, we prove that the adaptivity gap for the in-arborescences is between [e/(e-1), 2e/(e-1)], and for the out-arborescences the gap is between [e/(e-1), 2]. These are the first constant upper bounds in the full-adoption feedback model. Our analysis provides several novel ideas to tackle the correlated feedback appearing in adaptive stochastic optimization, which may be of independent interest.
  • 关键词:Adaptive influence maximization; adaptivity gap; full-adoption feedback
国家哲学社会科学文献中心版权所有