首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Approximating the Geometric Edit Distance
  • 本地全文:下载
  • 作者:Kyle Fox ; Xinyi Li
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:149
  • 页码:1-16
  • DOI:10.4230/LIPIcs.ISAAC.2019.23
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Edit distance is a measurement of similarity between two sequences such as strings, point sequences, or polygonal curves. Many matching problems from a variety of areas, such as signal analysis, bioinformatics, etc., need to be solved in a geometric space. Therefore, the geometric edit distance (GED) has been studied. In this paper, we describe the first strictly sublinear approximate near-linear time algorithm for computing the GED of two point sequences in constant dimensional Euclidean space. Specifically, we present a randomized O(n log^2n) time O(sqrt n)-approximation algorithm. Then, we generalize our result to give a randomized alpha-approximation algorithm for any alpha in [1, sqrt n], running in time O~(n^2/alpha^2). Both algorithms are Monte Carlo and return approximately optimal solutions with high probability.
  • 关键词:Geometric edit distance; Approximation; Randomized algorithms
国家哲学社会科学文献中心版权所有