首页    期刊浏览 2025年01月19日 星期日
登录注册

文章基本信息

  • 标题:Constructing Faithful Homomorphisms over Fields of Finite Characteristic
  • 本地全文:下载
  • 作者:Prerona Chatterjee ; Ramprasad Saptharishi
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:150
  • 页码:1-14
  • DOI:10.4230/LIPIcs.FSTTCS.2019.11
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study the question of algebraic rank or transcendence degree preserving homomorphisms over finite fields. This concept was first introduced by Beecken et al. [Malte Beecken et al., 2013] and exploited by them and Agrawal et al. [Manindra Agrawal et al., 2016] to design algebraic independence based identity tests using the Jacobian criterion over characteristic zero fields. An analogue of such constructions over finite characteristic fields were unknown due to the failure of the Jacobian criterion over finite characteristic fields. Building on a recent criterion of Pandey, Saxena and Sinhababu [Anurag Pandey et al., 2018], we construct explicit faithful maps for some natural classes of polynomials in fields of positive characteristic, when a certain parameter called the inseparable degree of the underlying polynomials is bounded (this parameter is always 1 in fields of characteristic zero). This presents the first generalisation of some of the results of Beecken, Mittmann and Saxena [Malte Beecken et al., 2013] and Agrawal, Saha, Saptharishi, Saxena [Manindra Agrawal et al., 2016] in the positive characteristic setting.
  • 关键词:Faithful Homomorphisms; Identity Testing; Algebraic Independence; Finite characteristic fields
国家哲学社会科学文献中心版权所有