摘要:In this paper, we will state and prove some weighted dynamic inequalities of Opial-type involving integrals of powers of a function and of its derivative on time scales which not only extend some results in the literature but also improve some of them. The main results will be proved by using some algebraic inequalities, the Hölder inequality and a simple consequence of Keller’s chain rule on time scales. As special cases of the obtained dynamic inequalities, we will get some continuous and discrete inequalities.