首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:An Evaluation of Tsunami Hazard Modeling in Gunungkidul Coastal Area using UAV Photogrammetry and GIS. Case Study: Drini Coastal Area
  • 本地全文:下载
  • 作者:Muh Aris Marfai ; Hendy Fatchurohman ; Ahmad Cahyadi
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:125
  • 页码:1-7
  • DOI:10.1051/e3sconf/201912509005
  • 出版社:EDP Sciences
  • 摘要:In recent years, Tourism activities in Gunungkidul Coastal Area rapidly increased. A large number of tourists visiting the coast considered as elements at risk that are exposed to tsunami hazards. Disaster infrastructures provided by the government e.g. hazard maps, evacuation routes, and locations for assembly points are inadequate. The tsunami inundation models provided by the government are based on national topographic maps (RBI), resulting in inaccurate models. DEM generation using UAV Photogrammetry produces high spatial resolution data that results in more accurate tsunami inundation model. The results of the model using UAV photogrammetry are also capable of producing several inundation scenarios and determine the safe areas that can be used for temporary evacuation sites. The use of UAV photogrammetry for tsunami inundation models provides many advantages including low cost and accurate model results. Evaluation of hazard maps and assembly points using UAV Photogrammetry modeling lead to more effective and less time-consuming on the evacuation process.
  • 其他摘要:In recent years, Tourism activities in Gunungkidul Coastal Area rapidly increased. A large number of tourists visiting the coast considered as elements at risk that are exposed to tsunami hazards. Disaster infrastructures provided by the government e.g. hazard maps, evacuation routes, and locations for assembly points are inadequate. The tsunami inundation models provided by the government are based on national topographic maps (RBI), resulting in inaccurate models. DEM generation using UAV Photogrammetry produces high spatial resolution data that results in more accurate tsunami inundation model. The results of the model using UAV photogrammetry are also capable of producing several inundation scenarios and determine the safe areas that can be used for temporary evacuation sites. The use of UAV photogrammetry for tsunami inundation models provides many advantages including low cost and accurate model results. Evaluation of hazard maps and assembly points using UAV Photogrammetry modeling lead to more effective and less time-consuming on the evacuation process.
  • 其他关键词:Unmanned Aerial Vehicle ; Hazard ; Tsunami ; Loss Estimation
国家哲学社会科学文献中心版权所有