首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Detecting Transcriptomic Structural Variants in Heterogeneous Contexts via the Multiple Compatible Arrangements Problem
  • 本地全文:下载
  • 作者:Yutong Qiu ; Cong Ma ; Han Xie
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:143
  • 页码:1-19
  • DOI:10.4230/LIPIcs.WABI.2019.18
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Transcriptomic structural variants (TSVs) - large-scale transcriptome sequence change due to structural variation - are common, especially in cancer. Detecting TSVs is a challenging computational problem. Sample heterogeneity (including differences between alleles in diploid organisms) is a critical confounding factor when identifying TSVs. To improve TSV detection in heterogeneous RNA-seq samples, we introduce the Multiple Compatible Arrangement Problem (MCAP), which seeks k genome rearrangements to maximize the number of reads that are concordant with at least one rearrangement. This directly models the situation of a heterogeneous or diploid sample. We prove that MCAP is NP-hard and provide a 1/4-approximation algorithm for k=1 and a 3/4-approximation algorithm for the diploid case (k=2) assuming an oracle for k=1. Combining these, we obtain a 3/16-approximation algorithm for MCAP when k=2 (without an oracle). We also present an integer linear programming formulation for general k. We characterize the graph structures that require k>1 to satisfy all edges and show such structures are prevalent in cancer samples. We evaluate our algorithms on 381 TCGA samples and 2 cancer cell lines and show improved performance compared to the state-of-the-art TSV-calling tool, SQUID.
  • 关键词:transcriptomic structural variation; integer linear programming; heterogeneity
国家哲学社会科学文献中心版权所有