首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Linear Transformations Between Colorings in Chordal Graphs
  • 本地全文:下载
  • 作者:Nicolas Bousquet ; Valentin Bartier
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:144
  • 页码:1-15
  • DOI:10.4230/LIPIcs.ESA.2019.24
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Let k and d be such that k >= d+2. Consider two k-colorings of a d-degenerate graph G. Can we transform one into the other by recoloring one vertex at each step while maintaining a proper coloring at any step? Cereceda et al. answered that question in the affirmative, and exhibited a recolouring sequence of exponential length. If k=d+2, we know that there exists graphs for which a quadratic number of recolorings is needed. And when k=2d+2, there always exists a linear transformation. In this paper, we prove that, as long as k >= d+4, there exists a transformation of length at most f(Delta) * n between any pair of k-colorings of chordal graphs (where Delta denotes the maximum degree of the graph). The proof is constructive and provides a linear time algorithm that, given two k-colorings c_1,c_2 computes a linear transformation between c_1 and c_2.
  • 关键词:graph recoloring; chordal graphs
国家哲学社会科学文献中心版权所有