摘要:Lifted Reed Solomon Codes (Guo, Kopparty, Sudan 2013) were introduced in the context of locally correctable and testable codes. They are multivariate polynomials whose restriction to any line is a codeword of a Reed-Solomon code. We consider a generalization of their construction, which we call lifted multiplicity codes. These are multivariate polynomial codes whose restriction to any line is a codeword of a multiplicity code (Kopparty, Saraf, Yekhanin 2014). We show that lifted multiplicity codes have a better trade-off between redundancy and a notion of locality called the t-disjoint-repair-group property than previously known constructions. More precisely, we show that, for t <=sqrt{N}, lifted multiplicity codes with length N and redundancy O(t^{0.585} sqrt{N}) have the property that any symbol of a codeword can be reconstructed in t different ways, each using a disjoint subset of the other coordinates. This gives the best known trade-off for this problem for any super-constant t < sqrt{N}. We also give an alternative analysis of lifted Reed Solomon codes using dual codes, which may be of independent interest.
关键词:Lifted codes; Multiplicity codes; Disjoint repair group property; PIR code; Coding theory