首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Small Space Stream Summary for Matroid Center
  • 本地全文:下载
  • 作者:Sagar Kale
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:145
  • 页码:1-22
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2019.20
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In the matroid center problem, which generalizes the k-center problem, we need to pick a set of centers that is an independent set of a matroid with rank r. We study this problem in streaming, where elements of the ground set arrive in the stream. We first show that any randomized one-pass streaming algorithm that computes a better than Delta-approximation for partition-matroid center must use Omega(r^2) bits of space, where Delta is the aspect ratio of the metric and can be arbitrarily large. This shows a quadratic separation between matroid center and k-center, for which the Doubling algorithm [Charikar et al., 1997] gives an 8-approximation using O(k)-space and one pass. To complement this, we give a one-pass algorithm for matroid center that stores at most O(r^2 log(1/epsilon)/epsilon) points (viz., stream summary) among which a (7+epsilon)-approximate solution exists, which can be found by brute force, or a (17+epsilon)-approximation can be found with an efficient algorithm. If we are allowed a second pass, we can compute a (3+epsilon)-approximation efficiently. We also consider the problem of matroid center with z outliers and give a one-pass algorithm that outputs a set of O((r^2+rz)log(1/epsilon)/epsilon) points that contains a (15+epsilon)-approximate solution. Our techniques extend to knapsack center and knapsack center with z outliers in a straightforward way, and we get algorithms that use space linear in the size of a largest feasible set (as opposed to quadratic space for matroid center).
  • 关键词:Streaming Algorithms; Matroids; Clustering
国家哲学社会科学文献中心版权所有