首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:The Maximum Exposure Problem
  • 本地全文:下载
  • 作者:Neeraj Kumar ; Stavros Sintos ; Subhash Suri
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:145
  • 页码:1-20
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2019.19
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Given a set of points P and axis-aligned rectangles R in the plane, a point p in P is called exposed if it lies outside all rectangles in R. In the max-exposure problem, given an integer parameter k, we want to delete k rectangles from R so as to maximize the number of exposed points. We show that the problem is NP-hard and assuming plausible complexity conjectures is also hard to approximate even when rectangles in R are translates of two fixed rectangles. However, if R only consists of translates of a single rectangle, we present a polynomial-time approximation scheme. For general rectangle range space, we present a simple O(k) bicriteria approximation algorithm; that is by deleting O(k^2) rectangles, we can expose at least Omega(1/k) of the optimal number of points.
  • 关键词:max-exposure; PTAS; densest k-subgraphs; geometric constraint removal; Network resilience
国家哲学社会科学文献中心版权所有