首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Pool detection from smart metering data with convolutional neural networks
  • 本地全文:下载
  • 作者:Cornelia Ferner ; Günther Eibl ; Andreas Unterweger
  • 期刊名称:Energy Informatics
  • 电子版ISSN:2520-8942
  • 出版年度:2019
  • 卷号:2
  • 期号:1 Supplement
  • 页码:10-18
  • DOI:10.1186/s42162-019-0097-8
  • 摘要:The nationwide rollout of smart meters in private households raises privacy concerns: Is it possible to extract privacy-sensitive information from a household’s power consumption? For a small sample of 869 Upper Austrian households, information about consumption-heavy amenities and household characteristics are available. This work studies the detection of households with swimming pools (the most common amenity in the dataset) using Convolutional Neural Networks (CNNs) applied on load heatmaps constructed from load profiles. Although only a small dataset is available, results show that by using CNNs, privacy can be broken automatically, i.e., without the time-consuming, manual feature generation. The method even slightly outperforms a previous approach that relies on a nearest neighbor classifier with engineered features.
  • 关键词:Smart metering ; Convolutional neural network ; Privacy
国家哲学社会科学文献中心版权所有