首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:A Comparison between BCI Simulation and Neurofeedback for Forward/Backward Navigation in Virtual Reality
  • 本地全文:下载
  • 作者:Bilal Alchalabi ; Jocelyn Faubert
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2019
  • 卷号:2019
  • 页码:1-13
  • DOI:10.1155/2019/2503431
  • 出版社:Hindawi Publishing Corporation
  • 摘要:A brain-computer interface (BCI) decodes the brain signals representing a desire to do something and transforms those signals into a control command. However, only a limited number of mental tasks have been previously investigated and classified. This study aimed to investigate two motor imagery (MI) commands, moving forward and moving backward, using a small number of EEG channels, to be used in a neurofeedback context. This study also aimed to simulate a BCI and investigate the offline classification between MI movements in forward and backward directions, using different features and classification methods. Ten healthy people participated in a two-session (48 min each) experiment. This experiment investigated neurofeedback of navigation in a virtual tunnel. Each session consisted of 320 trials where subjects were asked to imagine themselves moving in the tunnel in a forward or backward motion after a randomly presented (forward versus backward) command on the screen. Three electrodes were mounted bilaterally over the motor cortex. Trials were conducted with feedback. Data from session 1 were analyzed offline to train classifiers and to calculate thresholds for both tasks. These thresholds were used to form control signals that were later used online in session 2 in neurofeedback training to trigger the virtual tunnel to move in the direction requested by the user’s brain signals. After 96 min of training, the online band-power neurofeedback training achieved an average classification of 76%, while the offline BCI simulation using power spectral density asymmetrical ratio and AR-modeled band power as features, and using LDA and SVM as classifiers, achieved an average classification of 80%.
国家哲学社会科学文献中心版权所有