期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2019
卷号:116
期号:29
页码:14440-14447
DOI:10.1073/pnas.1818997116
出版社:The National Academy of Sciences of the United States of America
摘要:Curved rods are a ubiquitous bacterial phenotype, but the fundamental question of why they are shaped this way remains unanswered. Through in silico experiments, we assessed freely swimming straight- and curved-rod bacteria of a wide diversity of equal-volume shapes parameterized by elongation and curvature, and predicted their performances in tasks likely to strongly influence overall fitness. Performance trade-offs between these tasks lead to a variety of shapes that are Pareto-optimal, including coccoids, all straight rods, and a range of curvatures. Comparison with an extensive morphological survey of motile curved-rod bacteria indicates that the vast majority of species fall within the Pareto-optimal region of morphospace. This result is consistent with evolutionary trade-offs between just three tasks: efficient swimming, chemotaxis, and low cell construction cost. We thus reveal the underlying selective pressures driving morphological diversity in a widespread component of microbial ecosystems.