首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:The Unbearable Hardness of Unknotting
  • 本地全文:下载
  • 作者:Arnaud de Mesmay ; Yo'av Rieck ; Eric Sedgwick
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:129
  • 页码:1-19
  • DOI:10.4230/LIPIcs.SoCG.2019.49
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We prove that deciding if a diagram of the unknot can be untangled using at most k Reidemeister moves (where k is part of the input) is NP-hard. We also prove that several natural questions regarding links in the 3-sphere are NP-hard, including detecting whether a link contains a trivial sublink with n components, computing the unlinking number of a link, and computing a variety of link invariants related to four-dimensional topology (such as the 4-ball Euler characteristic, the slicing number, and the 4-dimensional clasp number).
  • 关键词:Knot; Link; NP-hard; Reidemeister move; Unknot recognition; Unlinking number; intermediate invariants
国家哲学社会科学文献中心版权所有