首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:Algorithms for Metric Learning via Contrastive Embeddings
  • 本地全文:下载
  • 作者:Diego Ihara ; Neshat Mohammadi ; Anastasios Sidiropoulos
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:129
  • 页码:1-14
  • DOI:10.4230/LIPIcs.SoCG.2019.45
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study the problem of supervised learning a metric space under discriminative constraints. Given a universe X and sets S, D subset binom{X}{2} of similar and dissimilar pairs, we seek to find a mapping f:X -> Y, into some target metric space M=(Y,rho), such that similar objects are mapped to points at distance at most u, and dissimilar objects are mapped to points at distance at least l. More generally, the goal is to find a mapping of maximum accuracy (that is, fraction of correctly classified pairs). We propose approximation algorithms for various versions of this problem, for the cases of Euclidean and tree metric spaces. For both of these target spaces, we obtain fully polynomial-time approximation schemes (FPTAS) for the case of perfect information. In the presence of imperfect information we present approximation algorithms that run in quasi-polynomial time (QPTAS). We also present an exact algorithm for learning line metric spaces with perfect information in polynomial time. Our algorithms use a combination of tools from metric embeddings and graph partitioning, that could be of independent interest.
  • 关键词:metric learning; contrastive distortion; embeddings; algorithms
国家哲学社会科学文献中心版权所有