首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Smallest k-Enclosing Rectangle Revisited
  • 本地全文:下载
  • 作者:Timothy M. Chan ; Sariel Har-Peled
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:129
  • 页码:1-15
  • DOI:10.4230/LIPIcs.SoCG.2019.23
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Given a set of n points in the plane, and a parameter k, we consider the problem of computing the minimum (perimeter or area) axis-aligned rectangle enclosing k points. We present the first near quadratic time algorithm for this problem, improving over the previous near-O(n^{5/2})-time algorithm by Kaplan et al. [Haim Kaplan et al., 2017]. We provide an almost matching conditional lower bound, under the assumption that (min,+)-convolution cannot be solved in truly subquadratic time. Furthermore, we present a new reduction (for either perimeter or area) that can make the time bound sensitive to k, giving near O(n k) time. We also present a near linear time (1+epsilon)-approximation algorithm to the minimum area of the optimal rectangle containing k points. In addition, we study related problems including the 3-sided, arbitrarily oriented, weighted, and subset sum versions of the problem.
  • 关键词:Geometric optimization; outliers; approximation algorithms; conditional lower bounds
国家哲学社会科学文献中心版权所有