首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:A Spanner for the Day After
  • 本地全文:下载
  • 作者:Kevin Buchin ; Sariel Har-Peled ; D{'a}niel Ol{'a}h
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:129
  • 页码:1-15
  • DOI:10.4230/LIPIcs.SoCG.2019.19
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We show how to construct (1+epsilon)-spanner over a set P of n points in R^d that is resilient to a catastrophic failure of nodes. Specifically, for prescribed parameters theta, epsilon in (0,1), the computed spanner G has O(epsilon^{-7d} log^7 epsilon^{-1} * theta^{-6} n log n (log log n)^6) edges. Furthermore, for any k, and any deleted set B subseteq P of k points, the residual graph G B is (1+epsilon)-spanner for all the points of P except for (1+theta)k of them. No previous constructions, beyond the trivial clique with O(n^2) edges, were known such that only a tiny additional fraction (i.e., theta) lose their distance preserving connectivity. Our construction works by first solving the exact problem in one dimension, and then showing a surprisingly simple and elegant construction in higher dimensions, that uses the one dimensional construction in a black box fashion.
  • 关键词:Geometric spanners; vertex failures; robustness
国家哲学社会科学文献中心版权所有