摘要:In a k-party communication problem, the k players with inputs x_1, x_2, ..., x_k, respectively, want to evaluate a function f(x_1, x_2, ..., x_k) using as little communication as possible. We consider the message-passing model, in which the inputs are partitioned in an arbitrary, possibly worst-case manner, among a smaller number t of players (t= 1/polylog(mM). It also improves on the prior Omega({epsilon}^{-2}log(mM)) lower bound and separates the complexity of approximating L_0 from approximating the p-norm L_p for p bounded away from 0, since the latter has an O(epsilon^{-2}log(mM)) bit upper bound.