首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:A Nearly-Linear Time Algorithm for Submodular Maximization with a Knapsack Constraint
  • 本地全文:下载
  • 作者:Alina Ene ; Huy L. Nguyen
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:132
  • 页码:1-12
  • DOI:10.4230/LIPIcs.ICALP.2019.53
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We consider the problem of maximizing a monotone submodular function subject to a knapsack constraint. Our main contribution is an algorithm that achieves a nearly-optimal, 1 - 1/e - epsilon approximation, using (1/epsilon)^{O(1/epsilon^4)} n log^2{n} function evaluations and arithmetic operations. Our algorithm is impractical but theoretically interesting, since it overcomes a fundamental running time bottleneck of the multilinear extension relaxation framework. This is the main approach for obtaining nearly-optimal approximation guarantees for important classes of constraints but it leads to Omega(n^2) running times, since evaluating the multilinear extension is expensive. Our algorithm maintains a fractional solution with only a constant number of entries that are strictly fractional, which allows us to overcome this obstacle.
  • 关键词:submodular maximization; knapsack constraint; fast algorithms
国家哲学社会科学文献中心版权所有