首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Algorithmically Efficient Syntactic Characterization of Possibility Domains
  • 本地全文:下载
  • 作者:Josep D{'i}az ; Lefteris Kirousis ; Sofia Kokonezi
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:132
  • 页码:1-13
  • DOI:10.4230/LIPIcs.ICALP.2019.50
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We call domain any arbitrary subset of a Cartesian power of the set {0,1} when we think of it as reflecting abstract rationality restrictions on vectors of two-valued judgments on a number of issues. In Computational Social Choice Theory, and in particular in the theory of judgment aggregation, a domain is called a possibility domain if it admits a non-dictatorial aggregator, i.e. if for some k there exists a unanimous (idempotent) function F:D^k - > D which is not a projection function. We prove that a domain is a possibility domain if and only if there is a propositional formula of a certain syntactic form, sometimes called an integrity constraint, whose set of satisfying truth assignments, or models, comprise the domain. We call possibility integrity constraints the formulas of the specific syntactic type we define. Given a possibility domain D, we show how to construct a possibility integrity constraint for D efficiently, i.e, in polynomial time in the size of the domain. We also show how to distinguish formulas that are possibility integrity constraints in linear time in the size of the input formula. Finally, we prove the analogous results for local possibility domains, i.e. domains that admit an aggregator which is not a projection function, even when restricted to any given issue. Our result falls in the realm of classical results that give syntactic characterizations of logical relations that have certain closure properties, like e.g. the result that logical relations component-wise closed under logical AND are precisely the models of Horn formulas. However, our techniques draw from results in judgment aggregation theory as well from results about propositional formulas and logical relations.
  • 关键词:collective decision making; computational social choice; judgment aggregation; logical relations; algorithm complexity
国家哲学社会科学文献中心版权所有