首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Faster Algorithms for All Pairs Non-Decreasing Paths Problem
  • 本地全文:下载
  • 作者:Ran Duan ; Ce Jin ; Hongxun Wu
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:132
  • 页码:1-13
  • DOI:10.4230/LIPIcs.ICALP.2019.48
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In this paper, we present an improved algorithm for the All Pairs Non-decreasing Paths (APNP) problem on weighted simple digraphs, which has running time O~(n^{{3 + omega}/{2}}) = O~(n^{2.686}). Here n is the number of vertices, and omega < 2.373 is the exponent of time complexity of fast matrix multiplication [Williams 2012, Le Gall 2014]. This matches the current best upper bound for (max, min)-matrix product [Duan, Pettie 2009] which is reducible to APNP. Thus, further improvement for APNP will imply a faster algorithm for (max, min)-matrix product. The previous best upper bound for APNP on weighted digraphs was O~(n^{1/2(3 + {3 - omega}/{omega + 1} + omega)}) = O~(n^{2.78}) [Duan, Gu, Zhang 2018]. We also show an O~(n^2) time algorithm for APNP in undirected simple graphs which also reaches optimal within logarithmic factors.
  • 关键词:graph optimization; matrix multiplication; non-decreasing paths
国家哲学社会科学文献中心版权所有