首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Geometric Multicut
  • 本地全文:下载
  • 作者:Mikkel Abrahamsen ; Panos Giannopoulos ; Maarten L{"o}ffler
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:132
  • 页码:1-15
  • DOI:10.4230/LIPIcs.ICALP.2019.9
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study the following separation problem: Given a collection of colored objects in the plane, compute a shortest "fence" F, i.e., a union of curves of minimum total length, that separates every two objects of different colors. Two objects are separated if F contains a simple closed curve that has one object in the interior and the other in the exterior. We refer to the problem as GEOMETRIC k-CUT, where k is the number of different colors, as it can be seen as a geometric analogue to the well-studied multicut problem on graphs. We first give an O(n^4 log^3 n)-time algorithm that computes an optimal fence for the case where the input consists of polygons of two colors and n corners in total. We then show that the problem is NP-hard for the case of three colors. Finally, we give a (2-4/3k)-approximation algorithm.
  • 关键词:multicut; clustering; Steiner tree
国家哲学社会科学文献中心版权所有