首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Approximating Activation Edge-Cover and Facility Location Problems
  • 本地全文:下载
  • 作者:Zeev Nutov ; Guy Kortsarz ; Eli Shalom
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:138
  • 页码:1-14
  • DOI:10.4230/LIPIcs.MFCS.2019.20
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:What approximation ratio can we achieve for the Facility Location problem if whenever a client u connects to a facility v, the opening cost of v is at most theta times the service cost of u? We show that this and many other problems are a particular case of the Activation Edge-Cover problem. Here we are given a multigraph G=(V,E), a set R subseteq V of terminals, and thresholds {t^e_u,t^e_v} for each uv-edge e in E. The goal is to find an assignment a={a_v:v in V} to the nodes minimizing sum_{v in V} a_v, such that the edge set E_a={e=uv: a_u >= t^e_u, a_v >= t^e_v} activated by a covers R. We obtain ratio 1+max_{x>=1}(ln x)/(1+x/theta)~= ln theta - ln ln theta for the problem, where theta is a problem parameter. This result is based on a simple generic algorithm for the problem of minimizing a sum of a decreasing and a sub-additive set functions, which is of independent interest. As an application, we get the same ratio for the above variant of {Facility Location}. If for each facility all service costs are identical then we show a better ratio 1+max_{k in N}(H_k-1)/(1+k/theta), where H_k=sum_{i=1}^k 1/i. For the Min-Power Edge-Cover problem we improve the ratio 1.406 of [Calinescu et al, 2019] (achieved by iterative randomized rounding) to 1.2785. For unit thresholds we improve the ratio 73/60~=1.217 of [Calinescu et al, 2019] to 1555/1347~=1.155.
  • 关键词:generalized min-covering problem; activation edge-cover; facility location; minimum power; approximation algorithm
国家哲学社会科学文献中心版权所有