首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Study on architecture design of electroactive sites on Vanadium Redox Flow Battery (V-RFB)
  • 本地全文:下载
  • 作者:Suhailah Sujali ; Mohd Rusllim Mohamed ; Ahmed Nurye Oumer
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:80
  • 页码:1-5
  • DOI:10.1051/e3sconf/20198002004
  • 出版社:EDP Sciences
  • 摘要:Numerous researches have been conducted to look for better design of cell architecture of redox flow battery. This effort is to improve the performance of the battery with respect to further improves of mass transport and flow distribution of electroactive electrolytes within the cell. This paper evaluates pressure drop and flow distribution of the electroactive electrolyte in three different electrode configurations of vanadium redox flow battery (V-RFB) cell, namely square-, rhombus- and circular-cell designs. The fluid flow of the above-mentioned three electrode design configurations are evaluated under three different cases i.e. no flow (plain) field, parallel flow field and serpentine flow field using numerically designed three-dimensional model in Computational Fluid Dynamics (CFD) software. The cell exhibits different characteristics under different cases, which the circular cell design shows promising results for test-rig development with low pressure drop and better flow distribution of electroactive electrolytes within the cell. Suggestion for further work is highlighted.
  • 其他摘要:Numerous researches have been conducted to look for better design of cell architecture of redox flow battery. This effort is to improve the performance of the battery with respect to further improves of mass transport and flow distribution of electroactive electrolytes within the cell. This paper evaluates pressure drop and flow distribution of the electroactive electrolyte in three different electrode configurations of vanadium redox flow battery (V-RFB) cell, namely square-, rhombus- and circular-cell designs. The fluid flow of the above-mentioned three electrode design configurations are evaluated under three different cases i.e. no flow (plain) field, parallel flow field and serpentine flow field using numerically designed three-dimensional model in Computational Fluid Dynamics (CFD) software. The cell exhibits different characteristics under different cases, which the circular cell design shows promising results for test-rig development with low pressure drop and better flow distribution of electroactive electrolytes within the cell. Suggestion for further work is highlighted.
国家哲学社会科学文献中心版权所有