首页    期刊浏览 2025年01月07日 星期二
登录注册

文章基本信息

  • 标题:Ultra-low Noise EEG at LSBB: Effective Connectivity Analysis
  • 本地全文:下载
  • 作者:Nazanin Hamzei ; John Steeves ; John
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:88
  • 页码:1-29
  • DOI:10.1051/e3sconf/20198802002
  • 出版社:EDP Sciences
  • 摘要:In this study, we further investigate electroencephalographic (EEG) data recorded during October 2014 in the ultra-shielded capsule at LSBB, with a focus on the study of task-specific Granger-causal effective connectivity pat-terns. In previous studies, we showed that noise-free EEG signals acquired in LSBB are suitable for analysis of activity patterns in high frequency bands, i.e. 30 Hz and above. We previously demonstrated that increases in task/rest gamma band (30-70 Hz) energy ratios during ankle and wrist movements are more prominent in the LSBB capsule than in an above-ground hospital environ-ment. The present study extends previous analyses by examining gamma-band connectivity, i.e. the functional patterns of interaction between 64 channels of EEG within the gamma band during motor tasks. We use parameters from a MultiVariate Auto-Regressive (MVAR) model to estimate effective connectivity in 10-second batches of EEG and report the average patterns across all batches in which subjects repetitively move their ankle/wrist. We report the gamma-band connectivity results in a reduced form as strength of hemispheric and inter-regional connections. The analysis reveals that for some subjects, significant channel-wise connections in the LSBB capsule outnumber those in the hospital, suggesting that patterns of gamma-band connectivity are better reflected in low-noise environments. This study again demonstrates the poten-tial of the ultra-shielded capsule and motivates further protocol enhancements and analysis methods for conducting future high-frequency EEG studies within LSBB.
  • 其他摘要:In this study, we further investigate electroencephalographic (EEG) data recorded during October 2014 in the ultra-shielded capsule at LSBB, with a focus on the study of task-specific Granger-causal effective connectivity pat-terns. In previous studies, we showed that noise-free EEG signals acquired in LSBB are suitable for analysis of activity patterns in high frequency bands, i.e. 30 Hz and above. We previously demonstrated that increases in task/rest gamma band (30-70 Hz) energy ratios during ankle and wrist movements are more prominent in the LSBB capsule than in an above-ground hospital environ-ment. The present study extends previous analyses by examining gamma-band connectivity, i.e. the functional patterns of interaction between 64 channels of EEG within the gamma band during motor tasks. We use parameters from a MultiVariate Auto-Regressive (MVAR) model to estimate effective connectivity in 10-second batches of EEG and report the average patterns across all batches in which subjects repetitively move their ankle/wrist. We report the gamma-band connectivity results in a reduced form as strength of hemispheric and inter-regional connections. The analysis reveals that for some subjects, significant channel-wise connections in the LSBB capsule outnumber those in the hospital, suggesting that patterns of gamma-band connectivity are better reflected in low-noise environments. This study again demonstrates the poten-tial of the ultra-shielded capsule and motivates further protocol enhancements and analysis methods for conducting future high-frequency EEG studies within LSBB.
国家哲学社会科学文献中心版权所有