首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:Preliminary tests on a microfluidic device to study pore clogging during biocementation
  • 本地全文:下载
  • 作者:Filipe Felício ; Vania Silverio ; Sofia Duarte
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:92
  • 页码:1-4
  • DOI:10.1051/e3sconf/20199211018
  • 出版社:EDP Sciences
  • 摘要:Soil improvement using ureolytic bacteria or other biological agents is a promising technique currently under investigation. It is based on the precipitation of calcium carbonate (biocement) due to the enzymatic hydrolysis of urea. The biocement produced clogs the soil pores, consequently bonding the soil grains and increasing overall strength and stiffness while reducing permeability. This study focused mainly on pore clogging effects. The effect of the enzyme and feeding solution concentrations was studied in small test tubes to find the maximum amount of precipitate found when changing the concentrations of both. Based on it, selected concentrations of enzyme and feeding solution were tested in a microfluidic device conceived to mimic a two-dimensional uniform porous size medium. Qualitatively, the amount of precipitate was proportional to that of the concentrations used. The location of the precipitate was clearly related with the direction of fluid flow during inoculation. These preliminary results highlight the fact that the use of alternative testing devices such as the one developed is a potential tool for the study of clogging phenomena occurring during this treatment.
  • 其他摘要:Soil improvement using ureolytic bacteria or other biological agents is a promising technique currently under investigation. It is based on the precipitation of calcium carbonate (biocement) due to the enzymatic hydrolysis of urea. The biocement produced clogs the soil pores, consequently bonding the soil grains and increasing overall strength and stiffness while reducing permeability. This study focused mainly on pore clogging effects. The effect of the enzyme and feeding solution concentrations was studied in small test tubes to find the maximum amount of precipitate found when changing the concentrations of both. Based on it, selected concentrations of enzyme and feeding solution were tested in a microfluidic device conceived to mimic a two-dimensional uniform porous size medium. Qualitatively, the amount of precipitate was proportional to that of the concentrations used. The location of the precipitate was clearly related with the direction of fluid flow during inoculation. These preliminary results highlight the fact that the use of alternative testing devices such as the one developed is a potential tool for the study of clogging phenomena occurring during this treatment.
国家哲学社会科学文献中心版权所有