首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Some Geotechnical Behaviour of Silty Clay Improved with Lime and Nanolime
  • 本地全文:下载
  • 作者:Mohd Raihan Taha ; Panbarasi Govindasamy ; Jamal Alsharef
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:92
  • 页码:1-6
  • DOI:10.1051/e3sconf/20199211005
  • 出版社:EDP Sciences
  • 摘要:Chemical stabilization involves application of chemical admixtures to improve the behaviour of soil. Thus, this study was carried out to validate the effectiveness of nanolime additives as soil stabilizer. Lime and nanolime were chosen as additive to investigate its effect on some geotechnical properties of clayey soil. The soil was mixed with the additives ranging from 0.2 to 1.0% by dry weight of soil. The results indicate that adding a low percentage of nanolime can lead to a noticeable reduction in soil plasticity. It is found that a considerable improvement in soil compaction results was achieved with nanolime compared with lime. Nanolime shows superiority in soil improvement compared with lime even at the dosage of 0.5%. Chemical reactions between the calcium oxides and dissolved silica present in the soil mineral produced calcium silicate hydrate (CSH), where the morphology of this product can be recognized under FESEM test. The results indicate that the stabilization mechanism of treated soil involved flocculation and agglomeration of soil particles by Ca+2 which bridges the negatively charged clay particles The existence of even a minute amount of nanolime can result in extraordinary effects on the engineering properties of soil.
  • 其他摘要:Chemical stabilization involves application of chemical admixtures to improve the behaviour of soil. Thus, this study was carried out to validate the effectiveness of nanolime additives as soil stabilizer. Lime and nanolime were chosen as additive to investigate its effect on some geotechnical properties of clayey soil. The soil was mixed with the additives ranging from 0.2 to 1.0% by dry weight of soil. The results indicate that adding a low percentage of nanolime can lead to a noticeable reduction in soil plasticity. It is found that a considerable improvement in soil compaction results was achieved with nanolime compared with lime. Nanolime shows superiority in soil improvement compared with lime even at the dosage of 0.5%. Chemical reactions between the calcium oxides and dissolved silica present in the soil mineral produced calcium silicate hydrate (CSH), where the morphology of this product can be recognized under FESEM test. The results indicate that the stabilization mechanism of treated soil involved flocculation and agglomeration of soil particles by Ca+2 which bridges the negatively charged clay particles The existence of even a minute amount of nanolime can result in extraordinary effects on the engineering properties of soil.
国家哲学社会科学文献中心版权所有