摘要:Chemical stabilization involves application of chemical admixtures to improve the behaviour of soil. Thus, this study was carried out to validate the effectiveness of nanolime additives as soil stabilizer. Lime and nanolime were chosen as additive to investigate its effect on some geotechnical properties of clayey soil. The soil was mixed with the additives ranging from 0.2 to 1.0% by dry weight of soil. The results indicate that adding a low percentage of nanolime can lead to a noticeable reduction in soil plasticity. It is found that a considerable improvement in soil compaction results was achieved with nanolime compared with lime. Nanolime shows superiority in soil improvement compared with lime even at the dosage of 0.5%. Chemical reactions between the calcium oxides and dissolved silica present in the soil mineral produced calcium silicate hydrate (CSH), where the morphology of this product can be recognized under FESEM test. The results indicate that the stabilization mechanism of treated soil involved flocculation and agglomeration of soil particles by Ca+2 which bridges the negatively charged clay particles The existence of even a minute amount of nanolime can result in extraordinary effects on the engineering properties of soil.
其他摘要:Chemical stabilization involves application of chemical admixtures to improve the behaviour of soil. Thus, this study was carried out to validate the effectiveness of nanolime additives as soil stabilizer. Lime and nanolime were chosen as additive to investigate its effect on some geotechnical properties of clayey soil. The soil was mixed with the additives ranging from 0.2 to 1.0% by dry weight of soil. The results indicate that adding a low percentage of nanolime can lead to a noticeable reduction in soil plasticity. It is found that a considerable improvement in soil compaction results was achieved with nanolime compared with lime. Nanolime shows superiority in soil improvement compared with lime even at the dosage of 0.5%. Chemical reactions between the calcium oxides and dissolved silica present in the soil mineral produced calcium silicate hydrate (CSH), where the morphology of this product can be recognized under FESEM test. The results indicate that the stabilization mechanism of treated soil involved flocculation and agglomeration of soil particles by Ca+2 which bridges the negatively charged clay particles The existence of even a minute amount of nanolime can result in extraordinary effects on the engineering properties of soil.