首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Soil microstructural changes induced by suffusion: x-ray computed tomography characterization
  • 本地全文:下载
  • 作者:Cong Doan Nguyen ; Nadia Benahmed ; Edward Andò
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:92
  • 页码:1-5
  • DOI:10.1051/e3sconf/20199201010
  • 出版社:EDP Sciences
  • 摘要:Suffusion is one mechanism of internal erosion, which occurs in gap-graded or broadly graded soils when the fine particles are detached and transported by the seepage flow through the void space formed by the granular soil skeleton. Suffusion is therefore a particle scale mechanism. During this microscale, the initial soil fabric may change due to both fines migration and coarse grains rearrangement, leading to an increase/decrease of global/local porosity and hydraulic conductivity, besides of a probable appearance of heterogeneity, which can, in turn, impact the mechanical behaviour of the eroded soil. In the literature, suffusion test results give only a macroscopic point of view and fail to quantify the effect of suffusion at the scale of the soil's induced heterogeneities. In this paper, x-ray tomography is used to get microscopic observations of soil sample microstructure evolution during a suffusion test. The results reveal that suffusion is not a homogeneous process; the removal of fine particles takes place mainly around the soil sample circumference leading to a higher void ratio at the periphery. Besides, the inter-granular void ratio decreases significantly but almost uniformly throughout the sample owing to the progressive collapse and reorganization of the coarse grains induced by the loss in fines.
  • 其他摘要:Suffusion is one mechanism of internal erosion, which occurs in gap-graded or broadly graded soils when the fine particles are detached and transported by the seepage flow through the void space formed by the granular soil skeleton. Suffusion is therefore a particle scale mechanism. During this microscale, the initial soil fabric may change due to both fines migration and coarse grains rearrangement, leading to an increase/decrease of global/local porosity and hydraulic conductivity, besides of a probable appearance of heterogeneity, which can, in turn, impact the mechanical behaviour of the eroded soil. In the literature, suffusion test results give only a macroscopic point of view and fail to quantify the effect of suffusion at the scale of the soil's induced heterogeneities. In this paper, x-ray tomography is used to get microscopic observations of soil sample microstructure evolution during a suffusion test. The results reveal that suffusion is not a homogeneous process; the removal of fine particles takes place mainly around the soil sample circumference leading to a higher void ratio at the periphery. Besides, the inter-granular void ratio decreases significantly but almost uniformly throughout the sample owing to the progressive collapse and reorganization of the coarse grains induced by the loss in fines.
国家哲学社会科学文献中心版权所有