首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Trace element mobility during CO2 storage: application of reactive transport modelling
  • 本地全文:下载
  • 作者:Dirk Kirste ; Julie K. Pearce ; Sue D. Golding
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:98
  • 页码:1-5
  • DOI:10.1051/e3sconf/20199804007
  • 出版社:EDP Sciences
  • 摘要:The geologic storage of CO2 carries both physical and chemical risks to the environment. In order to reduce those risks, it is necessary to provide predictive capabilities for impacts so that strategies can be developed to monitor, identify and mitigate potential problems. One area of concern is related to water quality both in the reservoir and in overlying aquifers. In this study we report the critical steps required to develop chemically constrained reactive transport models (RTM) that can be used to address risk assessment associated with water quality. The data required to produce the RTM includes identifying the individual hydrostratigraphic units and defining the mineral and chemical composition to sufficient detail for the modelling. This includes detailed mineralogy, bulk chemical composition, reactive mineral phase chemical composition and the identification of the occurrence and mechanisms of mobilisation of any trace elements of interest. Once the required detail is achieved the next step involves conducting experiments to determine the evolution of water chemistry as reaction proceeds preferably under varying elevated CO2 fugacities with and without impurities. Geochemical modelling of the experiments is then used for characterising the reaction pathways of the different hydrostratigraphic units. The resultant geochemical model inputs can then be used to develop the chemical components of a reactive transport model.
  • 其他摘要:The geologic storage of CO2 carries both physical and chemical risks to the environment. In order to reduce those risks, it is necessary to provide predictive capabilities for impacts so that strategies can be developed to monitor, identify and mitigate potential problems. One area of concern is related to water quality both in the reservoir and in overlying aquifers. In this study we report the critical steps required to develop chemically constrained reactive transport models (RTM) that can be used to address risk assessment associated with water quality. The data required to produce the RTM includes identifying the individual hydrostratigraphic units and defining the mineral and chemical composition to sufficient detail for the modelling. This includes detailed mineralogy, bulk chemical composition, reactive mineral phase chemical composition and the identification of the occurrence and mechanisms of mobilisation of any trace elements of interest. Once the required detail is achieved the next step involves conducting experiments to determine the evolution of water chemistry as reaction proceeds preferably under varying elevated CO2 fugacities with and without impurities. Geochemical modelling of the experiments is then used for characterising the reaction pathways of the different hydrostratigraphic units. The resultant geochemical model inputs can then be used to develop the chemical components of a reactive transport model.
国家哲学社会科学文献中心版权所有