首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:CFD simulation analysis on integrated operation of range-hood and make-up air supply for cooking-generated particulate matter
  • 本地全文:下载
  • 作者:Hyungkeun Kim ; Kyungmo Kang ; Yun-Gyu Lee
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:111
  • 页码:1-8
  • DOI:10.1051/e3sconf/201911104048
  • 出版社:EDP Sciences
  • 摘要:One of the most important problems of cooking-generated particulate matter (PM) is that it rapidly disperses when the range hood is in operation during cooking. To improve the performance of the range hood and prevent the dispersion of PM, a supply of make-up air equivalent to the airflow rate of the range hood should be provided. In this regard, we place an auxiliary supply system as a make-up supply to solve such problems. The objective of this study is to evaluate the performance of the make-up air supply system and the range hood. To evaluate this system, several case studies were performed involving CFD simulations. The auxiliary supply system is optimized through three types of variables (size of diffuser, distance from the source, and flow angle). An increase in the length of the diffuser causes PM dispersion to decrease. The installation of the diffuser at a certain distance from the emission source is effective in preventing dispersion of cooking-generated PM. In the building analyzed in this study, supplying the make-up air at an angle of 10° was observed to be most effective.
  • 其他摘要:One of the most important problems of cooking-generated particulate matter (PM) is that it rapidly disperses when the range hood is in operation during cooking. To improve the performance of the range hood and prevent the dispersion of PM, a supply of make-up air equivalent to the airflow rate of the range hood should be provided. In this regard, we place an auxiliary supply system as a make-up supply to solve such problems. The objective of this study is to evaluate the performance of the make-up air supply system and the range hood. To evaluate this system, several case studies were performed involving CFD simulations. The auxiliary supply system is optimized through three types of variables (size of diffuser, distance from the source, and flow angle). An increase in the length of the diffuser causes PM dispersion to decrease. The installation of the diffuser at a certain distance from the emission source is effective in preventing dispersion of cooking-generated PM. In the building analyzed in this study, supplying the make-up air at an angle of 10° was observed to be most effective.
国家哲学社会科学文献中心版权所有