摘要:This study is a part of a larger experimental and numerical campaign intended to evaluate the influence of the turbulence intensity at the inlet of the terminal air distribution systems on the local draft sensation and thermal discomfort of ventilation users. In this paper we present preliminary results of CFD simulations using a realistic model of human body along with an experimental validation. The model is further used in a piston distribution scheme to evaluate the influence of turbulence intensity on the comfort indicators. The recorded velocity, turbulence and temperature fields allowed us to estimate the distributions of DR, PPD and PMV indexes. For the investigated case, the results indicated a direct correlation.
其他摘要:This study is a part of a larger experimental and numerical campaign intended to evaluate the influence of the turbulence intensity at the inlet of the terminal air distribution systems on the local draft sensation and thermal discomfort of ventilation users. In this paper we present preliminary results of CFD simulations using a realistic model of human body along with an experimental validation. The model is further used in a piston distribution scheme to evaluate the influence of turbulence intensity on the comfort indicators. The recorded velocity, turbulence and temperature fields allowed us to estimate the distributions of DR, PPD and PMV indexes. For the investigated case, the results indicated a direct correlation.