首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Experimental performance analysis of a multiple-source and multiple-use heat pump system: winter field experiment and heating operation performance evaluation
  • 本地全文:下载
  • 作者:Mingzhe Liu ; Ryozo Ooka ; Toshiyuki Hino
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:111
  • 页码:1-8
  • DOI:10.1051/e3sconf/201911101076
  • 出版社:EDP Sciences
  • 摘要:We herein report the development of a distributed heat pump system that can utilize a variety of renewable energy sources to meet different building heating and cooling demands (i.e., a multiple source and multiple use heat pump system, MMHP). In this system, a water circulating loop is used to connect ground heat exchangers, a unique sky-source heat pump, and various heat pumps for heating and cooling purposes to form a thermal network within a building. This distribution increases the flexibility of the system and allows an improved matching of supply and demand. To evaluate the system performance, an experimental house was constructed, and a winter field experiment was conducted. We found that the reported heat pump for floor heating achieved a stable operation with a high coefficient of performance of ~11.5, while the heat collecting operation performance of the sky-source heat pump varied significantly depending on the amount of solar radiation and the outside air temperature. Finally, since the sky-source heat pump contributes to an improvement in the whole system performance, it appears that there is still room for improved regarding the whole system performance by adjusting the operating and control strategy.
  • 其他摘要:We herein report the development of a distributed heat pump system that can utilize a variety of renewable energy sources to meet different building heating and cooling demands (i.e., a multiple source and multiple use heat pump system, MMHP). In this system, a water circulating loop is used to connect ground heat exchangers, a unique sky-source heat pump, and various heat pumps for heating and cooling purposes to form a thermal network within a building. This distribution increases the flexibility of the system and allows an improved matching of supply and demand. To evaluate the system performance, an experimental house was constructed, and a winter field experiment was conducted. We found that the reported heat pump for floor heating achieved a stable operation with a high coefficient of performance of ~11.5, while the heat collecting operation performance of the sky-source heat pump varied significantly depending on the amount of solar radiation and the outside air temperature. Finally, since the sky-source heat pump contributes to an improvement in the whole system performance, it appears that there is still room for improved regarding the whole system performance by adjusting the operating and control strategy.
国家哲学社会科学文献中心版权所有