首页    期刊浏览 2024年12月14日 星期六
登录注册

文章基本信息

  • 标题:Study of the fire dynamics in a burning car and analysis of the possibilities for transfer of fire to a nearby vehicle
  • 本地全文:下载
  • 作者:Angel Terziev
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:112
  • 页码:1-8
  • DOI:10.1051/e3sconf/201911201015
  • 出版社:EDP Sciences
  • 摘要:A full scale experiment was carried out on the process of vehicle combustion and the ignition of an adjacent one. For this purpose, specialized measuring equipment (thermocouples and infrared camera) is used to determine the temperature field of the burning car and nearby vehicle. The burning car has 16 thermocouples mounted on it and one thermocouple mounted on the adjacent car in order to examine the heat transfer process. The temperature field between cars at different points of time is detected by an infrared camera, with a clear change in the temperature gradient in the presence of wind. It is one of the main reasons for the increased momentum of heat transfer. The research shows that with the available combustible load of the car (2,1 MW or around the average for the currently produced cars), the ignition of the neighbouring vehicle is expected around 14 minutes after the ignition of the main vehicle, with the ignition zone being in the engine compartment. Important information was obtained for both the dynamics of the burning vehicle and the temperature field between the two cars.
  • 其他摘要:A full scale experiment was carried out on the process of vehicle combustion and the ignition of an adjacent one. For this purpose, specialized measuring equipment (thermocouples and infrared camera) is used to determine the temperature field of the burning car and nearby vehicle. The burning car has 16 thermocouples mounted on it and one thermocouple mounted on the adjacent car in order to examine the heat transfer process. The temperature field between cars at different points of time is detected by an infrared camera, with a clear change in the temperature gradient in the presence of wind. It is one of the main reasons for the increased momentum of heat transfer. The research shows that with the available combustible load of the car (2,1 MW or around the average for the currently produced cars), the ignition of the neighbouring vehicle is expected around 14 minutes after the ignition of the main vehicle, with the ignition zone being in the engine compartment. Important information was obtained for both the dynamics of the burning vehicle and the temperature field between the two cars.
国家哲学社会科学文献中心版权所有