摘要:Biomass gasification is regarded as one of the most promising technology in the renewable energy field. The outcome of such operation, i.e. the synfuel, can be exploited in several ways, for example powering engines and turbines, and is considered more flexible than the biomass itself. For this reason, a careful analysis of the gasification performance is of paramount importance for the optimization of the process. One of the techniques that can be used for such a purpose, is the numerical analysis. CFD is indeed a tool that can be of great help in the design and study of the operation of the gasifier, allowing for an accurate prediction of the operating parameters. In this work, a downdraft gasifier is considered, and the biomass is made of wood chip. The present analysis is devoted to build the numerical model and simulate all the reactions that happen inside an actual gasifier, considering the drying of the wood chip, heating, pyrolysis, and combustion. Good match with experimental results is found, making the numerical model here presented a reliable virtual test bench where investigating the effects of variation in the working parameters.
其他摘要:Biomass gasification is regarded as one of the most promising technology in the renewable energy field. The outcome of such operation, i.e. the synfuel, can be exploited in several ways, for example powering engines and turbines, and is considered more flexible than the biomass itself. For this reason, a careful analysis of the gasification performance is of paramount importance for the optimization of the process. One of the techniques that can be used for such a purpose, is the numerical analysis. CFD is indeed a tool that can be of great help in the design and study of the operation of the gasifier, allowing for an accurate prediction of the operating parameters. In this work, a downdraft gasifier is considered, and the biomass is made of wood chip. The present analysis is devoted to build the numerical model and simulate all the reactions that happen inside an actual gasifier, considering the drying of the wood chip, heating, pyrolysis, and combustion. Good match with experimental results is found, making the numerical model here presented a reliable virtual test bench where investigating the effects of variation in the working parameters.