首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Jackknife, small bandwidth and high-dimensional asymptotics
  • 本地全文:下载
  • 作者:Yukitoshi Matsushita ; Yukitoshi Matsushita ; Taisuke Otsu
  • 期刊名称:Econometrics Publications
  • 印刷版ISSN:0969-4366
  • 出版年度:2019
  • 页码:1-28
  • 出版社:Suntory Toyota International Centre for Economics and Related Disciplines
  • 摘要:This paper sheds light on problems of statistical inference under alternative or nonstandard asymptotic frameworks from the perspective of jackknife empirical likelihood (JEL). Examples include small bandwidth asymptotics for semiparametric inference, many covariates asymptotics for regression models, and many-weak instruments asymptotics for instrumental variable regression. We first establish Wilks' theorem for the JEL statistic on a general semiparametric inference problem under the conventional asymptotics. We then show that the JEL statistics lose asymptotic pivotalness under the above nonstandard asymptotic frameworks, and argue that these phenomena are understood as emergence of Efron and Stein's (1981) bias of the jackknife variance estimator in the first order. Finally we propose a modification of JEL to recover asymptotic pivotalness under both the conventional and nonstandard asymptotics. Our modification works for all above examples and provides a unified framework to investigate nonstandard asymptotic problems.
  • 关键词:jackknife ; empirical likelihood ; nonstandard asymptotics
国家哲学社会科学文献中心版权所有