首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Modelling of Asphalt’s Adhesive Behaviour Using Classification and Regression Tree (CART) Analysis
  • 本地全文:下载
  • 作者:Md Arifuzzaman ; Uneb Gazder ; Md Shah Alam
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2019
  • 卷号:2019
  • 页码:1-8
  • DOI:10.1155/2019/3183050
  • 出版社:Hindawi Publishing Corporation
  • 摘要:The modification by polymers and nanomaterials can significantly improve different properties of asphalt. However, during the service life, the oxidation affects the constituents of modified asphalt and subsequently results in deviation from the desired properties. One of the important properties affected due to oxidation is the adhesive properties of modified asphalt. In this study, the adhesive properties of asphalt modified with the polymers (styrene-butadiene-styrene and styrene-butadiene) and carbon nanotubes were investigated. Asphalt samples were aged in the laboratory by simulating the field conditions, and then adhesive properties were evaluated by different tips of atomic force microscopy (AFM) following the existing functional group in asphalt. Finally, a predictive modelling and machine learning technique called the classification and regression tree (CART) was used to predict the adhesive properties of modified asphalt subjected to oxidation. The parameters that affect the behaviour of asphalt have been used to predict the results using the CART. The results obtained from CART analysis were also compared with those from the regression model. It was observed that the CART analysis shows more explanatory relationships between different variables. The model can predict accurately the adhesive properties of modified asphalts considering the real field oxidation and chemistry of asphalt at a nanoscale.
国家哲学社会科学文献中心版权所有