首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:GNER: A Generative Model for Geological Named Entity Recognition Without Labeled Data Using Deep Learning
  • 本地全文:下载
  • 作者:Qinjun Qiu ; Zhong Xie ; Liang Wu
  • 期刊名称:Earth and Space Science
  • 电子版ISSN:2333-5084
  • 出版年度:2019
  • 卷号:6
  • 期号:6
  • 页码:931-946
  • DOI:10.1029/2019EA000610
  • 出版社:John Wiley & Sons, Ltd.
  • 摘要:A variety of detailed data about geological topics and geoscience knowledge are buried in the geoscience literature and rarely used. Named entity recognition (NER) provides both opportunities and challenges to leverage this wealth of data in the geoscience literature for data analysis and further information extraction. Existing NER models and techniques are mainly based on rule‐based and supervised approaches, and developing such systems requires a costly manual effort. In this paper, we first design a generic stepwise framework for domain‐specific NER. Following this framework, domain‐specific entities and domain‐general words are collected and selected as seed terms. Normalization and grouping processes are then applied to these seed terms for further analysis. A random extraction algorithm based on a unigram language model is used to generate a large‐scale training data set consisting of probabilistically labeled pseudosentences. Each generated sentence is then used as input to the self‐training and learning algorithm. Experimental results on two constructed data sets demonstrate that the proposed model effectively recognizes and identifies geological named entities.
  • 关键词:natural language processing;named entity recognition;geoscience domain;unsupervised learning
国家哲学社会科学文献中心版权所有