首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Improved Parameter Uniform Priors in Bayesian Network Structure Learning
  • 本地全文:下载
  • 作者:Manxi Wang ; Liandong Wang ; Zidong Wang
  • 期刊名称:IOP Conference Series: Earth and Environmental Science
  • 印刷版ISSN:1755-1307
  • 电子版ISSN:1755-1315
  • 出版年度:2019
  • 卷号:252
  • 期号:4
  • 页码:1-7
  • DOI:10.1088/1755-1315/252/4/042099
  • 出版社:IOP Publishing
  • 摘要:Bayesian Dirichlet equivalent uniform score (BDeu) is often used in Bayesian structure learning. But it does not work well when data size is sparse because the equivalence of the prior parameter distribution isn't suit for the specific data set. To break the rules of uniform and equivalent, the paper proposes the Bayesian Dirichlet Sparse score (BDs) which change distribution of prior parameter through the all zero items in the sparse data. The circulation principle of information entropy and simulations are used to explain the reason why BDs is better than BDeu when data size is sparse. In the experiments, we also verify the stability of BDs when hyperparameters change.
国家哲学社会科学文献中心版权所有