首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Surface Flaw Detection of Industrial Products Based on Convolutional Neural Network
  • 本地全文:下载
  • 作者:Yongjun Zhang ; Ziliang Wang
  • 期刊名称:IOP Conference Series: Earth and Environmental Science
  • 印刷版ISSN:1755-1307
  • 电子版ISSN:1755-1315
  • 出版年度:2019
  • 卷号:252
  • 期号:2
  • 页码:1-6
  • DOI:10.1088/1755-1315/252/2/022114
  • 出版社:IOP Publishing
  • 摘要:Surface flaw detection in industrial products is a typical application of image classification. By improving the structure of Convolutional Neural Network (CNN), for example, the first large-scale convolution kernel is replaced by a cascaded 3×3 convolution kernel; replaces the whole with a 1×1 convolution kernel and Global Average Pooling Connection layer; sets the appropriate batch_size, the convergence rate and convergence accuracy of the model are greatly improved. Experiments show that the proposed method has a classification accuracy of more than 96% in the detection of automotive hose surface flaws.
国家哲学社会科学文献中心版权所有