摘要:This paper is concerned with the mean-square exponential input-to-state stability problem for a class of stochastic Cohen-Grossberg neural networks. Different from prior works, neutral terms and mixed delays are discussed in our system. By employing the Lyapunov-Krasovskii functional method, Itô formula, Dynkin formula, and stochastic analysis theory, we obtain some novel sufficient conditions to ensure that the addressed system is mean-square exponentially input-to-state stable. Moreover, two numerical examples and their simulations are given to illustrate the correctness of the theoretical results.