首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Comparison of GPR Random Noise Attenuation Using Autoregressive-FX Method and Tunable Quality Factor Wavelet Transform TQWT with Soft and Hard Thresholding
  • 本地全文:下载
  • 作者:Amin Ebrahimib Bardar ; Behrooz Oskooi ; Alireza Goudarzi
  • 期刊名称:Journal of Signal and Information Processing
  • 印刷版ISSN:2159-4465
  • 电子版ISSN:2159-4481
  • 出版年度:2019
  • 卷号:10
  • 期号:1
  • 页码:19-35
  • DOI:10.4236/jsip.2019.101003
  • 出版社:Scientific Research Publishing
  • 摘要:Ground Penetration Radar is a controlled source geophysical method which uses high frequency electromagnetic waves to study shallow layers. Resolution of this method depends on difference of electrical properties between target and surrounding electrical medium, target geometry and used bandwidth. The wavelet transform is used extensively in signal analysis and noise attenuation. In addition, wavelet domain allows local precise descriptions of signal behavior. The Fourier coefficient represents a component for all time and therefore local events must be described by the phase characteristic which can be abolished or strengthened over a large period of time. Finally basis of Auto Regression (AR) is the fitting of an appropriate model on data, which in practice results in more information from data process. Estimation of the parameters of the regression model (AR) is very important. In order to obtain a higher-resolution spectral estimation than other models, recursive operator is a suitable tool. Generally, it is much easier to work with an Auto Regression model. Results shows that the TQWT in soft thresholding mode can attenuate random noise far better than TQWT in hard thresholding mode and Autoregressive-FX method.
  • 关键词:GPR;Autoregressive-FX;Tunable Quality Factor Wavelet Transform TQWT
国家哲学社会科学文献中心版权所有