首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:False Data Injection Attacks Detection in Power System Using Machine Learning Method
  • 本地全文:下载
  • 作者:Can Yang ; Yong Wang ; Yuhao Zhou
  • 期刊名称:Journal of Computer and Communications
  • 印刷版ISSN:2327-5219
  • 电子版ISSN:2327-5227
  • 出版年度:2018
  • 卷号:6
  • 期号:11
  • 页码:276-286
  • DOI:10.4236/jcc.2018.611025
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:False data injection attacks (FIDAs) against state estimation in power system are a problem that could not be effectively solved by traditional methods. In this paper, we use four outlier detection methods, namely one-Class SVM, Robust covariance, Isolation forest and Local outlier factor method from machine learning area in IEEE14 simulation platform for test and compare their performance. The accuracy and precision were estimated through simulation to observe the classification effect.
  • 关键词:FIDA;Machine Learning;Outlier Detection;Unsupervised Learning
国家哲学社会科学文献中心版权所有