首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Emergent Hyperbolic Network Geometry
  • 本地全文:下载
  • 作者:Ginestra Bianconi ; Christoph Rahmede
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/srep41974
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:A large variety of interacting complex systems are characterized by interactions occurring between more than two nodes. These systems are described by simplicial complexes. Simplicial complexes are formed by simplices (nodes, links, triangles, tetrahedra etc.) that have a natural geometric interpretation. As such simplicial complexes are widely used in quantum gravity approaches that involve a discretization of spacetime. Here, by extending our knowledge of growing complex networks to growing simplicial complexes we investigate the nature of the emergent geometry of complex networks and explore whether this geometry is hyperbolic. Specifically we show that an hyperbolic network geometry emerges spontaneously from models of growing simplicial complexes that are purely combinatorial. The statistical and geometrical properties of the growing simplicial complexes strongly depend on their dimensionality and display the major universal properties of real complex networks (scale-free degree distribution, small-world and communities) at the same time. Interestingly, when the network dynamics includes an heterogeneous fitness of the faces, the growing simplicial complex can undergo phase transitions that are reflected by relevant changes in the network geometry.
国家哲学社会科学文献中心版权所有