首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Increased complexity of mushroom body Kenyon cell subtypes in the brain is associated with behavioral evolution in hymenopteran insects
  • 本地全文:下载
  • 作者:Satoyo Oya ; Hiroki Kohno ; Yooichi Kainoh
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-14174-6
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:In insect brains, the mushroom bodies (MBs) are a higher-order center for sensory integration and memory. Honeybee (Apis mellifera L.) MBs comprise four Kenyon cell (KC) subtypes: class I large-, middle-, and small-type, and class II KCs, which are distinguished by the size and location of somata, and gene expression profiles. Although these subtypes have only been reported in the honeybee, the time of their acquisition during evolution remains unknown. Here we performed in situ hybridization of tachykinin-related peptide, which is differentially expressed among KC subtypes in the honeybee MBs, in four hymenopteran species to analyze whether the complexity of KC subtypes is associated with their behavioral traits. Three class I KC subtypes were detected in the MBs of the eusocial hornet Vespa mandarinia and the nidificating scoliid wasp Campsomeris prismatica, like in A. mellifera, whereas only two class I KC subtypes were detected in the parasitic wasp Ascogaster reticulata. In contrast, we were unable to detect class I KC subtype in the primitive and phytophagous sawfly Arge similis. Our findings suggest that the number of class I KC subtypes increased at least twice - first with the evolution of the parasitic lifestyle and then with the evolution of nidification.
国家哲学社会科学文献中心版权所有