首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:VEGF-B promotes recovery of corneal innervations and trophic functions in diabetic mice
  • 本地全文:下载
  • 作者:Guohu Di ; Xiaowen Zhao ; Xia Qi
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/srep40582
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Vascular endothelial growth factor (VEGF)-B possesses the capacity of promoting injured peripheral nerve regeneration and restore their sensory and trophic functions. However, the contribution and mechanism of VEGF-B in diabetic peripheral neuropathy remains unclear. In the present study, we investigated the expression and role of VEGF-B in diabetic corneal neuropathy by using type 1 diabetic mice and cultured trigeminal ganglion (TG) neurons. Hyperglycemia attenuated the endogenous expression of VEGF-B in regenerated diabetic corneal epithelium, but not that of VEGF receptors in diabetic TG neurons and axons. Exogenous VEGF-B promoted diabetic corneal nerve fiber regeneration through the reactivation of PI-3K/Akt-GSK3β-mTOR signaling and the attenuation of neuronal mitochondria dysfunction via the VEGF receptor-1 and neuropilin-1. Moreover, VEGF-B improved corneal sensation and epithelial regeneration in both normal and diabetic mice, accompanied with the elevated corneal content of pigment epithelial-derived factor (PEDF). PEDF blockade partially abolished trophic function of VEGF-B in diabetic corneal re-innervation. In conclusion, hyperglycemia suppressed endogenous VEGF-B expression in regenerated corneal epithelium of diabetic mice, while exogenous VEGF-B promoted recovery of corneal innervations and trophic functions through reactivating PI-3K/Akt-GSK-3β-mTOR signaling, attenuating neuronal oxidative stress and elevating PEDF expression.
国家哲学社会科学文献中心版权所有