摘要:Recent advances in the HMP (human microbiome project) research have revealed profound implications of the human microbiome to our health and diseases. We postulated that there should be distinctive features associated with healthy and/or diseased microbiome networks. Following Occam's razor principle, we further hypothesized that triangle motifs or trios, arguably the simplest motif in a complex network of the human microbiome, should be sufficient to detect changes that occurred in the diseased microbiome. Here we test our hypothesis with six HMP datasets that cover five major human microbiome sites (gut, lung, oral, skin, and vaginal). The tests confirm our hypothesis and demonstrate that the trios involving the special nodes (e.g., most abundant OTU or MAO, and most dominant OTU or MDO, etc.) and interactions types (positive vs. negative) can be a powerful tool to differentiate between healthy and diseased microbiome samples. Our findings suggest that 12 kinds of trios (especially, dominantly inhibitive trio with mixed strategy, dominantly inhibitive trio with pure strategy, and fully facilitative strategy) may be utilized as in silico biomarkers for detecting disease-associated changes in the human microbiome, and may play an important role in personalized precision diagnosis of the human microbiome associated diseases.