首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Fungal endophyte-induced salidroside and tyrosol biosynthesis combined with signal cross-talk and the mechanism of enzyme gene expression in Rhodiola crenulata
  • 本地全文:下载
  • 作者:Jin-Long Cui ; Ya-Nan Wang ; Jin Jiao
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-12895-2
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Endophyte is a factor that affects the physiology and metabolism of plant. However, limited information is available on the mechanism of interaction between endophyte and plant. To investigate the effects of endophytic fungus ZPRs-R11, that is, Trimmatostroma sp., on salidroside and tyrosol accumulations in Rhodiola crenulata, signal transduction, enzyme gene expression, and metabolic pathway were investigated. Results showed that hydrogen peroxide (H2O2), nitric oxide (NO), and salicylic acid (SA) involved in fungus-induced salidroside and tyrosol accumulations. NO acted as an upstream signal of H2O2 and SA. No up- or down-stream relationship was observed, but mutual coordination existed between H2O2 and SA. Rate-limiting enzyme genes with the maximum expression activities were UDP-glucosyltransferase, tyrosine decarboxylase (TYDC), monoamine oxidase, phenylalanine ammonialyase (PAL), and cinnamic-4-hydroxylase sequentially. Nevertheless, the genes of tyrosine transaminase and pyruvate decarboxylase only indicated slightly higher activities than those in control. Thus, TYDC and PAL branches were the preferential pathways in ZPRs-R11-induced salidroside and tyrosol accumulation. Trimmatostroma sp. was a potential fungus for promoting salidroside and tyrosol accumulations. The present data also provided scientific basis for understanding complex interaction between endophytic fungus and R. crenulata.
国家哲学社会科学文献中心版权所有