首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Studying the role of fascin-1 in mechanically stressed podocytes
  • 本地全文:下载
  • 作者:Felix Kliewe ; Christian Scharf ; Henrik Rogge
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-10116-4
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Glomerular hypertension causes glomerulosclerosis via the loss of podocytes, which are challenged by increased mechanical load. We have demonstrated that podocytes are mechanosensitive. However, the response of podocytes to mechanical stretching remains incompletely understood. Here we demonstrate that the actin-bundling protein fascin-1 plays an important role in podocytes that are exposed to mechanical stress. Immunofluorescence staining revealed colocalization of fascin-1 and nephrin in mouse kidney sections. In cultured mouse podocytes fascin-1 was localized along actin fibers and filopodia in stretched and unstretched podocytes. The mRNA and protein levels of fascin-1 were not affected by mechanical stress. By Western blot and 2D-gelelectrophoresis we observed that phospho-fascin-1 was significantly downregulated after mechanical stretching. It is known that phosphorylation at serine 39 (S39) regulates the bundling activity of fascin-1, e.g. required for filopodia formation. Podocytes expressing wild type GFP-fascin-1 and non-phosphorylatable GFP-fascin-1-S39A showed marked filopodia formation, being absent in podocytes expressing phosphomimetic GFP-fascin-1-S39D. Finally, the immunofluorescence signal of phosphorylated fascin-1 was strongly reduced in glomeruli of patients with diabetic nephropathy compared to healthy controls. In summary, mechanical stress dephosphorylates fascin-1 in podocytes in vitro and in vivo thereby fascin-1 may play an important role in the adaptation of podocytes to mechanical forces.
国家哲学社会科学文献中心版权所有