首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Partitioning the roles of CYP6G1 and gut microbes in the metabolism of the insecticide imidacloprid in Drosophila melanogaster
  • 本地全文:下载
  • 作者:Roberto Fusetto ; Shane Denecke ; Trent Perry
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-09800-2
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Resistance to insecticides through enhanced metabolism is a worldwide problem. The Cyp6g1 gene of the vinegar fly, Drosophila melanogaster, is a paradigm for the study of metabolic resistance. Constitutive overexpression of this gene confers resistance to several classes of insecticides, including the neonicotinoid imidacloprid (IMI). The metabolism of IMI in this species has been previously shown to yield oxidative and nitro-reduced metabolites. While levels of the oxidative metabolites are correlated with CYP6G1 expression, nitro-reduced metabolites are not, raising the question of how these metabolites are produced. Some IMI metabolites are known to be toxic, making their fate within the insect a second question of interest. These questions have been addressed by coupling the genetic tools of gene overexpression and CRISPR gene knock-out with the mass spectrometric technique, the Twin-Ion Method (TIM). Analysing axenic larvae indicated that microbes living within D. melanogaster are largely responsible for the production of the nitro-reduced metabolites. Knock-out of Cyp6g1 revealed functional redundancy, with some metabolites produced by CYP6G1 still detected. IMI metabolism was shown to produce toxic products that are not further metabolized but readily excreted, even when produced in the Central Nervous System (CNS), highlighting the significance of transport and excretion in metabolic resistance.
国家哲学社会科学文献中心版权所有